The Making of Eternal!
Share
The cycle begins anew in Eternal, an endless chain that invites a light and relaxing game to play with friends and family alike.
The Prototype vs The Final
Originally Eternal was game represented by, not cards, but thin slivers of paper in card sleeves, with merely two letters written in sharpie. For clarity the final product now makes use of numbers, to help make straights less confusing, but the symbols (which the letters were meant to represent), though vestigial, remain in the final product, and will remain that way for any variation prints that may come in the future. (Such as a Sci-Fi or Post-Apocalyptic theming for the game, with new artworks representing such themes.)
Other than that major difference, there was also two key mechanical changes, firstly only straights could be made, not matches of the same type of card. After doing some calculations (which may admittedly be wrong, but yes, I did include the Wilds) it seemed as though the matches were slightly rarer than the straights, so I decided to bring them in, had it been the opposite case, where they were more common, they would not have been included. At first to represent their rarities (As shown below) I made their point gain significantly higher than straights, but fundamentally I still wanted straights to be relevant, so I docked points away, despite them being quite rare in comparison.
For the following statistics, it is assumed the 52 card deck, comprised of 6 of each the 8 number cards, as well as 4 Wild cards, are shuffled, and that what is looked at is the random top 6 cards of the deck. (With the exception of 8 straights and matches which look at the top 8 cards instead.)
Statistics
Straights (Blind, Best of 6 Cards)
3 Straight = 17.569%
4 Straight = 14.342%
5 Straight = 13.744%
6 Straight = 9.943%
8 Straight = 1.057%
Matches (Blind, Best of 6 Cards)
3 of a kind = 2.420%
4 of a kind = 0.353%
5 of a kind = 0.045%
6 of a kind = 0.005%
8 of a kind = 0.00003%
It should also be noted with these statistics, that should, for example, a 5 card straight be in the top 6 cards revealed, then it counts towards the 5 card straight, but not the 4 card straight, nor the 3 card straight.
As such, the point distribution used to have matches worth double their straight counterpart, which had the adverse side effect of people not creating straights, which is goes against the idea of an endless chain, where players search for new cards they don't have, rather than cards they do have. So the final point distribution ended up getting lowered significantly, by 1 or more points depending on the potency of the match.
But what of the second key mechanical change? I hear you asking. Well the second is that you, in the final game, may only play one set per turn. For good reason. In the prototype, there was no such limit. So whoever went first, would just make set, after set, after set, and win the game. It's a basic change, but important nonetheless.
The Design
Other than the original look of the cards, and those mechanics that came after some playtesting, the final game is fairly similar to its original form, and as such I can easily review why I made the choices I did in it's design.
Foremost I wanted to create a card game with a 52 card deck, as I hadn't officially made one before (though I have made a prototype before that I am planning on making as well), secondly I wanted a game that embodied the term "Fuck it we ball," where the main emotion one should feel at any given time is "Fuck it we ball," and although such a state can't be reached perpetually, it can be heavily incentivized and the game mechanics can make it natural for a player to enter such a state. Thirdly I also wanted to incorporate a fleeting idea I had, about matching symbols on cards, where each card would have 2 traits that represented 1 animal (Such as a Hawk having a Claw and Feather symbol) and in some way these animals would match together to form chains of animals. (Such as Hawk with Claw and Feather linking to Hummingbird with Feather and Small which would then link to Rat which might have Small and Fur.) Each animal in this case would have a unique combination of 2 traits, meaning their would be a total of 45 unique animals with 10 unique traits, and 9 cards remaining (2 of which have, and currently are, reserved for rules text) though this would change quickly.
With that the first mechanic was created, an action one can do on their turn, that would either win them the game, or lose it. Gamble. Though the specifics weren't concrete, this idea of risking it all as a last ditch effort was, needless to say, kept.
However, for such a mechanic to hold any relevance or any stakes, their must be a proper amount of build up to it, build up that should have every player on the edge of their seats, and as such, there had to be an entire game building up to it.
Keeping with the idea that animals would connect to each other via traits, it made sense that over the course of the game you would work on creating sets of cards, keeping them and scoring them, and should you make a full chain, which included every trait twice, you would instantly win the game.
Thus came the fine balance of making what originally was meant to be an up to 6 player game (Now a 2-4 player game), into a game about collecting chains of cards, with a deck of only 52 cards. Firstly, chains could not be of only 2 cards, that would be to easy, secondly, to make players try to maximize risk against reward, there had to be an incentive to make longer chains by holding cards back, and thirdly, there had to fundamentally be a way to get more cards for longer chains.
Again, we want a game with build up, to make gambling more exciting, so lets work backwards here. Let's assume we want players to make straights of roughly 5 at a time, that means, in a 52 card deck, 10 straights total would be made. Split among 5 or 6 players wouldn't work to well (though you can still play at these player counts), so that got dashed quickly, reason being that each player would at some point need to hold 5 cards, assuming this is what you would start with to even the playing field, means that half of the possible straights are immediately dashed, and many loose ends could be made.
To make chains easier to make, and to make calculations easier, I decided to not make each animal unique, but rather lower the amount to only 8 animals, which also left enough room for 4 extra cards, which we'll get to later.
Ok, to take a quick break here, a lot has happened in this discussion, mostly a jumble of thoughts, and if you were able to follow along, that's amazing in it's own right. Well anyways, this is simply how I make games, so hopefully it has been ordered in an understandable way, but if it wasn't then don't worry about it.
Anyhow, with those assumptions of 5 starting cards (to accommodate the default of 5 long straights) and 8 animals, what came next is how one gets longer straights. To avoid players not playing straights, and only drawing to get longer and longer sets, there had to be a hand limit, and since 5 is convenient, as its been what I've been using, I kept it at 5. Any higher and the starting hand count would have to increase (since players would naturally get to that higher amount, so not increasing it would just waste time), any lower would feel strange (as players would have to remember that what they have is actually to much, which is unusual) and as such 5 worked out well.
So again, how does one get more cards? Well one could draw a card, and then pick a card to discard. Simple as that. Hand sizes wouldn't bloat, the 5 straight standard is kept, and players get some agency on what to keep, and eventually what to play.
Now, assuming high straights are worth much more, what is holding players back from just waiting to get the perfect card, making the game a boring snooze fest, where you just wait for a 5 of a kind? Well, the answer in the final game is twofold, to lock your set in to keep others from stealing your cards (though that hasn't been considered yet) and secondly because you are rewarded, not with arbitrary points, meaningless till the end game, but with more cards, oh sweet, sweet cards.
Normally when you think of playing cards, you imagine them leaving your hand, not being replenished. Should that be the case, making higher straights becomes impossible if you play a lower straight, making players hold off on their plays. This is why I decided to make players redraw after they play, that way they still have the opportunity to create larger straights later on, and this way players would always have a 5 card hand, which is a good sign, consistency, to some extent, is nice to have in any game.
It was also at this point that I realized, that players when drawing their cards, would have the potential to make a 6 straight while they were deciding what to discard, so I simply decided to add in the rule that allows you to make sets any time on your turn.
Now, back to the "Fuck it we ball," state of mind. Gambling. How do we incorporate it? Easy, we have 8 animals, so if you make an 8 straight you win. But how does one make an 8 straight? Well instead of drawing 1 card, since you always have 5 cards in hand, you just draw 3 instead. Ok, detour over.
Just kidding, the detour is never over. We have here a major oversight thus far, though the game seems to be going along swimmingly, there is still the case of the 4 missing playing cards, what of them? Well, I want gambling to be a heavy risk yes, but also one the players are willing to risk taking. So to lighten the load of getting exactly 8 different animals, I decided on making the 4 extra cards into Wilds, that way there would be some leeway in the gambling, and some leeway in normal straight making.
Ok, all that is fine and dandy, and the game seems kind of fun, but it's missing something. Ah. That's right. Other players. All the design I've concocted this far has a total of one goose egg of player interaction. One glorious zero. So, how do we include some interaction? Well, players are constantly discarding cards, so wouldn't it suck seeing the card you need go to the void? So how about you now have the capability to draw from the discard pile, now you are also slightly incentivized to hold back cards other might need, that way they score lower. Also now gambling all of a sudden became a hell lot less risky, so how about we make it so you have to draw from the top of the discard pile, and on top of that, to avoid cherry picking, lets make it so you have to draw everything from the discard pile, should you choose to do so.
Alright, a step forward towards the correct direction, though I wouldn't exactly call it player interaction. Well it's as good of a time as any to pull from the classic human instinct of "What's yours is mine" and let players steal cards from each other, at random, like their drawing from the deck. But folly! This means one player has 6 cards and another 4! How do we resolve this indecency? Well, we can just make the thief give a card back, and let there be balance in the universe. Plus we can give the thief some power, by allowing them to choose what card they give back.
Ok, well that's fine and dandy, but 2 problems, why wouldn't you just draw from the deck, there isn't really an inherent advantage, other then stalling the game, since the deck will last longer, but therein lies the second problem, the game can now be stalled. What to do?
Eureka! Ask me, what is the difference between an unknown deck of cards, and a hand of cards another player knows, but not you? Well, you answered your own question my dear Watson, the cards are known! And thus the Goldfish action was made, or as it's known now, the Take and Give.
You ask a player for a card, if they don't have it, your turn is forfeit, but if they do have it, you get a guaranteed card you wanted! High risk, high reward, high "Fuck it we ball," truly a glorious revelation in the designing of this game.
Not only that, but we can make Wilds, default if they don't have the card you ask for, lowering the risk, while making Wild cards harder to hold onto, making them feel more balanced, and incentivizing players to use them even if it doesn't contribute to a higher straight, like it could easily do in any other case without Goldfishing.
And bwammy! We done with the main game design! Huzzah!
But wait.
The scoring.
I've been often asked if I was high when coming up with the following scorings. I wasn't. But it is a reasonable assumption. Also in general I don't smoke, but if someone assumed that I did from this scoring sheet, I wouldn't blame them.
Straights
3 Straight = 2 Points
4 Straight = 3 Points
5 Straight = 4 Points
6 Straight = 6 Points
8 Straight = Victory
Ok, lets break it down.
The 8 straight is only achievable by gambling, and it should either win or lose you the game, so that is self explanatory.
The 7 straight is impossible to achieve, because you can never have more than 6 cards in your hand at once, other than through gambling, where you would instantly lose if you couldn't make an 8 straight.
Now let's move to the 3 straight, why 2 points? Well let's evaluate my first thought, 3 straight = 1 point. It's the lowest one can score, so it makes sense it only be 1 point right? Well unless we go into decimals, which we won't, the next reward output is 2 points, for a 4 straight. In another perspective, for 1 additional card, or an additional 33% "effort", you get 1 additional point, or an additional 100% reward. Yes, I want to reward higher straights, but certainly not to that extent, and even extrapolating that further, from that 4 straight, a 5 straight at 25% more "effort", is only worth 50% additional reward, assuming a 5 straight is worth 3 points. And if it was worth 4 points, then the same problem occurs as from 3 straight to 4 straight, essentially overinflating everything.
Ok, so now we know why 3 straights aren't worth 1 point, so why aren't they the intuitive 3 points, 1 point per card? Well, it is exactly that, I don't want a measly 3 straight to be worth 1 point per card, your return on investment being 100% of the "effort" you put in, makes it to valuable, once again lets look at the surrounding cases. A 4 straight worth 4 points is the same 1 point per card, so there is no benefit to playing it over a 3 straight, other than getting the extra card into your score, which is good, but nothing worth fighting for, again, we want players to want longer straights. A 4 straight worth 5 points seems decent, and it is. Genuinely this could have been a path I took, but I decided against it, I'll talk more about it in the next paragraph. Lastly a 4 straight worth 6 points, which to those of you with keen math sense, you will realizes this scenario is exactly the same a 3 straight worth 1 point and a 4 straight worth 2 points.
Alright, the 4 straight worth 5 points scenario, why not? Well like we did 2 paragraphs before, lets look at higher straights. A 5 straight worth 6 points simply isn't as valuable, since the extra card in the 4 straight is worth 2 points, and the extra card in the 5 straight is only worth 1 point, 33% more "effort" for 60% more reward versus 25% more "effort" for 25% more reward. It in this case is strictly better to save your additional card in hopes of using it in a different 4 straight, so lets assume a 5 straight worth 7 points, the same 1 card for 2 point scaling as with the 4 straight. It solves the prior problem, with 25% more "effort" for 40% more reward. To save time lets assume the 6 straight, 8 point scenario, is the same as the 5 point 6 point scenario, because it is. This leaves us with 3 straight for 3 points, 4 straight for 5 points, 5 straight for 7 points, and 6 straight for 9 points.
You'll notice, these point spreads are nearly identical to the final point spread, the only difference being that 4 and 5 straights are slightly less valuable, with 50% more reward instead of 60% and 33% more reward instead of 40% respectively. The choice comes down to 3 things, counting, psychology, and length.
Ultimately it comes down to preference, but I prefer the lower points for those reasons, counting wise, lower numbers are simpler than larger numbers, however there is the trade off of it being less susceptible to patterns, and it being harder to remember than each additional card being worth 2 points.
In terms of psychology, a constant 1 card for 2 points makes 6 straight feel less special, even though statistically they are objectively better (20% "effort" for 29% reward) versus an entire jump of 2 points in the lower point system where prior additional cards set a precedent of only being worth 1 additional point each.
Lastly length, you've heard me repeat again and again how I want to reward longer straights. This is it. That is how you do it. Simply make it worth more in comparison to the rest, in the 6 for 9 system it is a 20% "effort" for 29% reward, in the 6 for 6 system, it is a 20% "effort" for 50% reward. Not only that, but tying into the psychology point, in the lower point system, there is never a point prior to the 6 straight where each card in the straight is worth 1 full point. It is only at the 6 straight checkpoint where each card is worth its full potential, and as such it makes it all the more significant for its easy to see value, the only time its 1 to 1.
But again it could easily swing either way, and as to my last point about how the 6 for 6 system is more rewarding, not just psychologically, but in terms of value (the 20% "effort" for 29% reward versus 20% "effort" for 50% reward point) it could be easily changed by raising the point output of 6 straights by an additional point, but all this to say, it was a tough call.
OK, all in all, that was a lot. But this game design pathway was actually pretty unique to me as well, since a lot of it was mathing out hand sizes, animal combinations, hand make up statistics, and point values to sets, and in all likelihood, something to this mathematical depth, however deep or shallow, will not likely occur again, though it certainly was fun, and I hope you enjoyed reading about it! Especially since you stayed around to the end, unless you scrolled to the end I suppose, but so be it either way.
Thanks for reading!